NATURAL AND SYNTHETIC MATERIALS WITH INSECT HORMONE ACTIVITY. XVI.*

THE SYNTHESIS OF DERIVATIVES OF OXYGEN HETEROCYCLES CONTAINING N-GERANYLANILINE MOIETY

J.KAHOVCOVÁ, Z.ARNOLD and F.ŠORM

Institute of Organic Chemistry and Biochemistry, Czechoslovak Academy of Sciences, Prague 6

Received June 2nd, 1972

In connection with the study of compounds with a potential juvenile hormone activity a series of compounds was prepared, derived by fusion of a five- or six-membered heterocyclic ring, containing one or two oxygen atoms, to N-geranylaniline.

The high biological activity of O-geranyl-3,4-methylenedioxyphenol promted us to prepare now a series of five and six-membered oxygen heterocycles containing N-geranyl or N,N-digeranylaniline in the molecule (Table I, I-XI). Some of them had a remarkable activity, especially toward *Triatoma infestans*, the carrier of the pandemic Chagas illness.

For the attachment of a geranyl group onto a nitrogen atom the standard procedure was made use of which we described earlier¹. The obtained substances were then submitted to hydrogenation in order to affect their biological property. In some cases their unsaturated carbon atom chain was oxidized with monoperphthalic acid².

EXPERIMENTAL

All prepared substances were purified by column chromatography on silica gel containing 8 weight % of water. The final products were oils.

4-(3,7-Dimethyl-2,6-octadienylamino)-1,2-methylenedioxybenzene (I) and 4-[Bis(3,7-dimethyl-2,6-octadienylamino]-1,2-methylenedioxybenzene (II) (Method A)

A mixture of 2.7 g (0.02 mol) 4-amino-1,2-methylenedioxybenzene³, 2.8 g (0.02 mol) anhydrous potassium carbonate, and 4.3 g (0.02 mol) geranyl bromide⁴ in 10 ml of dimethylformamide was

Part XV: This Journal 38, 765 (1973).

Collection Czechoslov, Chem. Commun. /Vol. 38/ (1973)

heated at 70°C for 8 h under stirring. After cooling it was diluted with water and extracted with

Kahovcová, Arnold, Šorm:

ether. The ethereal layer was washed with water and dried. After removing the solvent under reduced pressure the residue was chromatographed on silica gel (10% of ether in light petroleum, v/v). Yield 2.1 g (38.4%) of compound I and 2.5 g (30%) of compound II. In the same manner

TABLE I

Derivatives of Oxygen Heterocycles Containing an N-Geranyl- and N,N-Digeranylaniline Residue

Compound (method) ^a	х	R ¹ (R ²)	Conditions °C/h (yield, %)	Formula (m.w.)	Calculated/Found		
					% C	%Н	% N
I	OCH ₂	G	70/8 ^b	C ₁₇ H ₂₃ NO ₂	74∙69	8·48	5·12
(A)		(H)	(38·4)	(273·3)	74∙57	8·48	5·19
11		G	70/8 ^b	C ₂₇ H ₃₉ NO ₂	79·17	9·60	3·42
(A)		(G)	(30·0)	(409·6)	78 ·91	9·69	3·05
111		GO	<i>a,c</i>	C ₁₇ H ₂₃ NO ₃	70∙56	8·01	4·84
(B)		(H)	(53·0)	(289·3)	70∙58	7·99	5·10
[V		GH	<i>a</i>	C ₁₇ H ₂₇ NO ₂	73·60	9·81	5∙04
(C)		(H)	(44·2)	(277·4)	73·94	9·70	4∙60
V		G	20/21 ^d	C ₂₈ H ₄₁ NO	82·49	10·13	3·43
(A)		(G)	(39·2)	(407·6)	82·22	9·93	3·17
. VI	CH==CCOOCH ₃	G	20/0·5 ^d	C ₂₀ H ₂₅ NO ₃	73∙36	7-98	4·28
(A)		(H)	(44·5)	(327·4)	73∙58	8-19	4·52
V11	CH=CCOOCH ₃	G	$20/0.5^d$	C ₃₀ H ₄₁ NO ₃	77·71	8·91	3·02
(A)		(G)	(29.3)	(463·6)	77·85	8·80	3·27
VIII		G	70/8 ^d	C ₁₈ H ₂₅ NO ₂	75·22	8·77	4∙87
(A)		(H)	(37·7)	(287·3)	75·21	8·82	4∙71
IX	CH2OCH2	G	70/8 ^d	C ₂₈ H ₄₁ NO ₂	79∙38	9·76	3·31
(A)		(G)	(32·8)	(423·6)	79•58	9·63	3·02
X	-0-CH2-CH2-	G	70/8 ^d	C ₁₈ H ₂₅ NO ₂	75·22	8·77	4·87
(A)		(H)	(32·2)	(287·3)	75·61	8·89	5·08
XI	-0-CH ₂ -CH ₂	G	70/8 ^d	C ₂₈ H ₄₁ NO ₂	79∙38	9·76	3·31
(A)		(G)	(34·6)	(423·6)	79∙07	9·72	3·13

G CH2-CH=C(CH3)-CH2-CH2-CH=C(CH3)2; GO CH2-CH=C(CH3)-CH2- $-CH_2-CH_2-C(CH_3)_2; GH CH_2-CH_2-CH(CH_3)-CH_2-CH_2-CH_2-CH_2-CH(CH_3)_2$

^a See Experimental; ^b chromatographed on silica gel, 10% ether in light petroleum; ^c chromatographed on silica gel, 50% ether in light petroleum; ^d chromatographed on silica gel, 20% ether in light petroleum.

1166

substance V was prepared from 5-amino-2,3-dihydrobenzofuran⁵, substances VI and VII from 5-aminobenzofuran-2-carboxylic acid⁵, substances VIII and IX from 5-aminobenzo-1,3-dioxan⁶, and compounds X and XI from 5-aminobenzo-1,4-dioxan⁷.

4-(6,7-Epoxy-3,7-dimethyl-2-octenylamino)-1,2-methylenedioxybenzene (III) (Method B)

A mixture of 0.6 g (0-0022 mol) of compound I and 2.2 g (0-011 mol) of trifluoroacetic anhydride in ether was allowed to stand for one hour at room temperature. After partitioning of the reaction mixture between ether and a saturated solution of NaHCO₃ the ethereal layer was washed, dried, and evaporated under reduced pressure. The residue was mixed with 15 ml of monoperphthalic acid in ether (27 mg/ml) and after 7 h standing at room temperature the separated phthalic acid was filtered off and the reaction mixture partitioned between ether and a 10% NaHCO₃ solution. The ethereal layer was washed with water, dried, and evaporated under reduced pressure. The residue, dissolved in a minimum amount of ethanol, was additioned with 2 ml of 10% NaOH solution and allowed to stand at room temperature for 2 days. Then the pH of the mixture was adjusted to 6-7, ethanol was evaporated, the mixture was partitioned between ether and water, and the ethereal layer dried and evaporated. The residue was chromatographed on silica gel with a 50% ether in light petroleum mixture. Yield 0-34 g (53%) of substance *III*.

4-(3,7-Dimethyloctylamino)-1,2-methylenedioxybenzene (IV) (Method C)

Substance I (0.27 g) in ethyl acetate was hydrogenated in the presence of 50 mg of PtO₂ at room temperature and normal pressure. The catalyst was filtered off and the solvent evaporated. The residue was extracted with dry ether, the solution washed with water and dried over MgSO₄. Vacuum distillation of the residue gave 0.12 g (44%) of compound *IV* boiling at 180°C/0.5 Torr (bath temperature).

REFERENCES

- 1. Kahovcová J., Arnold Z., Šorm F.: This Journal 38, 765 (1973).
- Arnold Z., Kahovcová J., Pánková M., Svoboda M., Tichý M., Šorm F.: This Journal 38, 261 (1973).
- 3. Salway A. H.: J. Chem. Soc. 95, 1155 (1909).
- 4. Isler O., Gutmann H., Lindlar H., Montavon M., Rüegg R., Ryser G., Zeller P.: Helv. Chim. Acta 39, 463 (1956).
- 5. Erlenmeyer H., Grubenmann W., Bloch H.: Chim. Acta 31, 75 (1948).
- 6. Chattaway F. D., Goepp R. M.: J. Chem. Soc. 1933, 699.
- 7. Heertjes P. M., Revallier L. J.: Rec. Trav. Chim. 69, 262 (1950).

Translated by Ž. Procházka,